Exercise 61

Find equations of the tangent line and normal line to the curve at the given point.

$$
y=(2+x) e^{-x}, \quad(0,2)
$$

Solution

The aim is to find the slope of the tangent and normal lines at $x=0$. Take the derivative of y.

$$
\begin{aligned}
\frac{d}{d x}(y) & =\frac{d}{d x}\left[(2+x) e^{-x}\right] \\
\frac{d y}{d x} & =\left[\frac{d}{d x}(2+x)\right] e^{-x}+(2+x)\left[\frac{d}{d x}\left(e^{-x}\right)\right] \\
& =(1) e^{-x}+(2+x)\left[\left(e^{-x}\right) \cdot \frac{d}{d x}(-x)\right] \\
& =e^{-x}+(2+x)\left[\left(e^{-x} \cdot(-1)\right]\right. \\
& =e^{-x}-(2+x) e^{-x} \\
& =[1-(2+x)] e^{-x} \\
& =(-1-x) e^{-x} \\
& =-(1+x) e^{-x}
\end{aligned}
$$

Plug in $x=0$ to find the slope of the tangent line at the given point $(0,2)$. The slope of the normal line is the negative reciprocal.

$$
m_{\|}=-(1+0) e^{-0}=-1 \quad \Rightarrow \quad m_{\perp}=-\frac{1}{-1}=1
$$

Use the point-slope formula with these slopes and the given point $(0,2)$ to get the equations of the tangent and normal lines.

$$
\begin{array}{rr}
y-2=-1(x-0) & y-2=1(x-0) \\
y-2=-x & y-2=x \\
y=2-x & y=2+x
\end{array}
$$

Below is a graph of the curve and its tangent and normal lines at $(0,2)$.

